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Abstract 

 

The discovery of cisplatin (cis-diamminedichloroplatinum(II)) is regarded as a medical 

revolution in cancer therapy. Following studies have shown activity against cancers of the head, 

lung, ovarian, testicular, and cervical. The reaction mechanism of cisplatin is established on the 

intrastrand cross linking by the formation of covalent bonds with the N7 of the purine bases 

which causes an irregular effect impeding the normal transcription and DNA replication 

mechanisms of the cell. Only cisplatin and carboplatin (cis-diamimine-1,1’-cyclobutane 

dicarboxylate platinum) are clinically used as antitumor agents today. Carboplatin is an analogue 

of cisplatin and is used more often because it has a reduced amount of side effects. Analogues of 

cisplatin having heterocyclic compounds with aromatic N-containing ligands have shown very 

promising antitumor properties in vitro and in vivo in cisplatin resistant model systems. 

Heterocyclic compounds function as DNA intercalating agents which insert between the base 

pairs of the double helix unwinding it disrupting the normal function of DNA and leads to 

interference with gene transcriptions, gene expression, carcinogenesis, mutagenesis and cell 

death.   

This research focuses on the design and synthesis of amphiphilic molecules having a lipid 

hydrophobic chain containing ester functional groups and a hydrophilic head which has a 

platinum coordinated bond with aromatic N-containing heterocyclic compounds such as 

bipyridine and biquinoline to form cisplatin analogues. Amphiphilic cisplatin analogues emulsify 

to make micelles that project the Pt-Cl groups on the surface of the micelle. These platinum 

micelles may be used as alkylating-like agents, intercalating agents and as drug delivery systems 

that encapsulate anticancer drugs. The action of over expressed esterases will cleave the ester 

group found in the lipid chain and micelles. The micelles of platinum biquinoline and platinum 
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bipyridine will disassemble by the action of the esterases releasing the anticancer drugs, the Pt-

Cl will bind to the DNA and the heterocyclic rings will intercalate in the DNA disrupting the 

DNA structure leading to cell death. 
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Chapter 1: Introduction 

 

Metal based drugs are extensively under research in the studies of different cancer therapies. 

Metal compounds having positive charges at the metal center have better binding to negatively 

charged molecules such as proteins and nucleic acids.
1
 Cis-[diamminedichloroplatinum(II)] 

known as cisplatin is a square planar complex of platinum(II) which was accidentally discovered 

by Barnet Rosenberg in the 1960s (Figure 1.1)
2
. 

 

Figure 1.1 Cisplatin
2
 

Cisplatin is an important chemotherapeutic agent effective against head, lung, ovarian, testicular 

and cervical cancers.
2,3,4,5,6,7 

The reaction mechanism of cisplatin is established on the intrastrand 

cross linking DNA lesion. Cisplatin, subsequent to hydrolysis of the chloride ligands, (Figure 

1.2), forms adducts with DNA by coordination bonds with purine bases preferably with 

guanine.
8,9,10

  

 

 

 

 

 



www.manaraa.com

2 

 

Figure 1.2 Cisplatin Hydrolysis11 

Platinum compounds have been used in cancer therapy since the introduction of the parent 

compound cisplatin. Platinum based compounds are still under research since certain tumors are 

limited by inherent or acquired resistance to the clinically used anticancer drugs cisplatin and 

carboplatin.
11,12,13

 In addition cisplatin has several side effects such as nephrotoxicity, nausea, 

vomiting, myelosuppression, ototoxicity, neurotoxicity, gastrointestinal toxicity, and is active to 

only a limited number of tumor types.
14,15

  Since the discovery of cisplatin about 3000 platinum 

compounds have been synthesized only 30 compounds have been under clinical trials and more 
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than half of them have been discarded. Currently four platinum compounds similar to cisplatin 

such as  carboplatin, oxaliplatin and nedaplatin, and lobaplatin are used in the treatment of 

cancer (Figure 1.3).
16

  

 

Figure 1.3 Carboplatin, oxaliplatin, nedaplatin, lobaplatin17 

Research on analogues of cisplatin having N-heterocyclic compounds have shown very 

promising antitumor properties in vitro and in vivo in cisplatin resistant model systems. 

 N-heterocyclic cisplatin analogues function as DNA intercalating agents which insert between 

the base pairs of the double helix, unwinding it and disrupting the normal function of DNA 
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leading to interference with gene transcriptions, gene expression, carcinogenesis, mutagenesis 

and cell death.
17,18 

1.1 Chemistry of Cisplatin 

 

Cisplatin was first discovered by Italian chemist Michel Peyrone in 1845, and called for a long 

time Peyrone’s salt. Cisplatin can be prepared in different ways, such as reacting aqueous 

ammonia with potassium tetrachloroplatinate(II), heating trans-diamminedichloroplatinum(II) or 

tetraammineplatinum(II) chloride with aqueous ammonia, and by mixing potassium 

tetrachloplatinate(II) with potassium iodide and aqueous ammonia to give as product 

diamminediiodoplatinum(II) which can be reacted with silver nitrate followed by potassium 

chloride giving cisplatin.
19

 

1.2 General Chemistry of Elemental Platinum and its Precursor Chloroplatinic Acid 

H2PtCl66H2O used in the Production of Cisplatin. 
 

Chloroplatinic acid H2PtCl6H2O (Scheme 1)
20

 is used as a precursor for the synthesis of 

potassium tetrachloroplatinate.  Potassium tetrachloroplatinate is used as the starting material in 

the synthesis of cisplatin. 
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Scheme 1. Chemistry of elemental platinum for the production of platinum precursors.20 

                                                                                                                                                                                                                                    

1.2.1 Synthesis of Chloroplatinic Acid H2(PtCl)6. 
21,22,23

 

 

Pt + 4HNO3 + 6HCl → H2PtCl6 + 4NO2 + 4H2O 

 

As shown on the above chemical equation the chloroplatinic acid can be obtained by treating 

elemental platinum with aqua regia which is a mixture of nitric acid and hydrochloric acid.  

1.2.2 Synthesis of Potassium Tetrachloroplatinate(II) (K2PtCl4). 

Potassium tetrachloroplatinate(II) ( K2PtCl4)
 22

 is obtained by using chloroplatinic acid  

 

(H2PtCl6)  as described on chemical equations below. 

PtCl
4

Pt

Cl
2

(500 K)

800 K

PtCl
2

PtX
4

( X= Br or I)

Br2 and I2 

(400 K)

PtX
2

450 K

HCl

PtF
4

F2 (700 K)

PtO
2
nH

2
O

aqueous OH-

PtO
2

heat < 500 K

H
2
PtCl

6
 6H

2
O

Fuse

with

NaNO3
(1) aqua regia

(2) evap. with

      HCl
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H2PtCl6 + 2KCl → K2PtCl6 + 2HCl 

 

K2PtCl6, + SO2 + H2O→ K2PtC14 + 2HC1 + H2SO4 

 

1.2.3 Synthesis of Cisplatin. 

 

Potassium tetrachloroplatinate(II) is the starting material in the synthesis of cisplatin
23

  

 

(Scheme 2). 

 

 
 

Scheme 2. Synthesis of cisplatin.23 

1.3 Mechanism of Action 

 

Anticancer platinum compounds exert their cytotoxic effect when binding to DNA
24

 via chloride 

ligand exchange.
25

 Different mechanisms have been described for cisplatin mechanism of action 

such as intracellular accumulation of cisplatin, impaired DNA repair processes, and decreased 

levels of cisplatin inactivating factors such as metallothioneins and glutathione.
26

 Although 

cisplatin forms covalent adducts with different biological molecules, it binds principally to 
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DNA.
27

 Phosphate groups, sugar oxygen atoms, and heterocyclic nucleobases form part of DNA 

and have lone pairs of electrons where metal ions may bind, however studies have shown that 

cisplatin binds preferentially at the nitrogen atoms of the nucleobases.
28

 Cisplatin’s mechanism 

of action is by binding to DNA forming different types of adducts.
29

  Cisplatin chlorides are 

substituted by positively charged aqua groups or neutral hydroxyl groups
30

 that can react with 

nucleophilic sites intracellularly to form protein, RNA, DNA intrastrands and interstrand adducts 

crosslinks
31

 causing damage to the cell mitochondria, inhibiting ATPase activity, changing the 

cellular transport system, causing inflammation, apoptosis and death in cells.
32

 

1.4 Effects of Platinum Compounds on the DNA 

 

DNA is the main target of platinum compounds being that DNA adduct formation is key for 

cisplatin cytotoxicity.
33

 Cisplatin interacts with different biomolecules and its anticancer activity 

originates from its facility to form bifunctional DNA crosslinks. Cisplatin binding to DNA 

activates a distortion or bending which is considered a serious lesion the DNA causing a chain of 

events on intracellular macromolecules to form DNA, RNA, and protein adducts that causes 

damage to the cells. Cisplatin binding to N7 guanines is due to the electron density of the N7 

atoms and because their accessibility sites in the DNA electrophilic attack by platinum
34,35

. The 

higher affinity of cisplatin to sulfur donors, such as methionines and cystines, than to nitrogen 

donors on DNA has as consequence the inactivation of cisplatin by the plethora of sulfur 

containing cytoplasmatic ligands
36

. Approximatelly 90% of the cisplatin is bound to plasma 

proteins in the blood
37

 and about 1% of intracellular cisplatin that reacts with DNA results in 

intrastrand and interstrand crosslinks, in which the intrastand cross link between adjacent 

guanines is the most common adduct. The DNA adducts are thought to be the key toxic lesions 

caused by cisplatin
38

. Research in vitro have shown that cisplatin in DNA forms approximately 
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65% 1, 2-(GpG), 1,2-d(GpG), 25% 1,2-d(ApG), and 5-10% 1,3-d(Gp-NpG) intrastrand cross 

links (Figure 1.4)
 39

. 

 

Figure 1.4 DNA adducts.40 

1.5 Development of Resistance 

 

The development of cellular resistance to cisplatin and its side effect such as nephrotoxicity, 

nausea, vomiting, myelosuppression, ototoxicity, neurotoxicity, and gastrointestinal toxicity are 

the limitations in cancer therapy which inhibits its clinical trials.
41

 The mechanism that limits the 

damage includes cellular defense, change in drug accumulation, cellular thiol levels, and DNA 

repair.
42

 Increased efflux and decreased uptake is one of the reasons for which intracellular 

accumulation of cisplatin is reduced and is very often observed in cisplatin resistant cell lines. 
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Intracellular proteins such as metallothioneins and sulfur containing molecules also induce 

resistance to cisplatin. Variations in expression of oncogenes and tumor suppressor genes have 

also been related to cellular resistance to cisplatin.
43

 The primary mechanism of platinum 

compounds is the formation of platinum DNA adducts which causes cell cycle arrest and 

apoptosis. The reparation of these DNA adducts involves polymorphisms in genes such as 

Mismatch Repair (MMR), Nucleotide Excision Repair (NER), and Base Excision Repair 

(BER).
44

 The DNA mismatch repair (MMR) pathway is very important and vital for conserving 

the genomic integrity.
45

 MMR is the system that corrects mistakes in DNA polymerases, these 

errors can be detected in DNA because they do not form the Watson-Crick base pairs,
46

 the 

MMR repairs the mismatched nucleotides resulting from replication errors.
47

 The nucleotide 

excision repair pathway eliminates bulky DNA adducts induced by a wide variety of 

chemotherapeutic drugs as cisplatin and electrophilic chemicals. Oxidative lesions and other 

types of endogenous DNA damage can be processed by the NER pathway considered as an 

important biological cellular defensive system.
48

 The base excision repair is the major pathway 

that corrects most common forms of DNA damage
49

.  The BER pathway first recognize damaged 

DNA and excision is carried out by glycosylases aimed to differentiate base lesions and in 

second place a damaged general stage.
50

 

Chapter 2: Polymeric Drug Systems as a Therapeutic Strategy against Cisplatin Resistance 

in Cancer Cells 
 

Polymeric drug delivery systems are high molecular compounds used as delivery systems of 

medicines in the treatment of cancer. Polymeric drugs accumulate selectively in tumor due to the 

enhanced permeability retention effect and high molecular weight. These properties of polymeric 

drugs give a high period of circulation in the blood and retention time in the solid cancer tumors. 



www.manaraa.com

10 

Polymeric drug delivery systems include polymer drug conjugates, polymer protein conjugates, 

polymer DNA complexes, dendrimers and polymeric micelles (Figure 2.1)
54

. Polymeric drugs do 

not need to have a special design for special receptors to improve the release of the medications 

since divinding cancerous cells have more active endocytosis than normal cells. Polymeric drug 

delivery systems have been designed on the basis of the enhanced permeability retention (EPR) 

effect.
51,52, 53

 

 

 

Figure 2.1 Schematic illustration of representative polymeric delivery systems :  (a) polymer drug conjugates; (b) 
polymer protein conjugates; (c) polymer DNA complexes; (d) polymeric micelles; (e) dendrimers.54 
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2.1 The Enhanced Permeability Retention Effect 

 

The enhanced permeability retention effect, discovered by Dr. Hiroshi Maeda is a mechanism 

based on the efficiency of polymeric drugs (Figure 2.2). 55
 

 

Figure 2.2 Enhanced permeability and retention (EPR). Long-circulating drug carriers (1) penetrate through the 

leaky pathological vasculature (2) into the tumor interstitium (3) and degrade there, releasing a free drug (4) and 

creating  its high local concentration.
55

 

The EPR effect is achieved because of the tumor blood vessels are found defective with 

malformations in the cancer zone. Blood tumor vessels have a quick increase of the endothelial 

cells. The tumor blood vessels are crooked, have deficient mural cells and have abnormal 

basement membrane formation as well as defective vascular structure which are the results of the 

rapid vascularization fundamental to provide oxygen and nutrients for the growing of cancer 

cells. The deficiencies of the cancer vasculature system decrease the lymphatic drainage, because 

of the high molecular weight polymeric drug systems can be retained in the tumor for a longer 

time (Figure 2.3).  
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Figure 2.3 Schematic representation of different mechanisms by which nanocarriers can deliver drugs to tumours. 

Passive tissue targeting is achieved by extravasation of nanoparticles through increased permeability of the tumor 

vasculature and ineffective lymphatic drainage (EPR effect). Active cellular targeting (inset) can be achieved by 

functionalizing  the surface of nanoparticles with ligands that promote cell-specific recognition and binding. The 

nanoparticles can (i) release their contents in close proximity to the target cells; (ii) attach to the membrane of the 
cell and act as an extracellular sustained-release drug depot or (iii) internalize into the cell.56 

Many studies have proven that the EPR effect is a passive accumulation of macromolecules in 

solid tumor tissues, elevating the therapeutic efficiency for the treatment of cancers and 

decreasing the side effects.
57,58,59,60

 

2.2 Polymeric Drug Conjugates as Anticancer Delivery Systems 

 

In the 1970s Dr. Helmut Ringdorf visualized the idea of attaching anticancer agents to a water 

soluble polymer, which could improve the pharmacokinetics and the active targeting of 

chemotherapy drugs. Clinical trials using polymeric drug conjugates have shown some 

advantages over the parent drugs, exhibiting fewer side effects, ease of drug administration, 

enhanced therapeutic efficacy, and improved patient compliance (Figure 2.4).
61

 Polymeric drug 
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conjugates are delivery systems in which a drug is covalently attached to a polymer carrier via 

biodegradable linker.
62

 The majority of the anticancer drugs in clinical use such as cisplatin, 

doxorubicin, and paclitaxel lack tumor selectivity and have short circulation time in the blood 

stream. Cisplatin and platinum based compounds with a low molecular weight have an 

unfavorable pharmacokinetic pathway and short half life in the blood stream. Polymeric 

conjugate drugs are thought to overcome the limitations of low molecular platinum based drugs 

with tailored selective tumor targeting and controlled releasing properties.
63

  

 



www.manaraa.com

14 

 

Figure 2.4 Polymer-anticancer drug conjugates. Each panel shows both the detailed chemical structure and a cartoon 

of the general structure. The polymer backbone is shown in black, linker region in green, drug in red and additional 

components (for example, a targeting residue) in blue. (a) Two examples of more simple polymer–drug conjugates 

containing doxorubicin (left) and paclitaxel (right) that have progressed to clinical trial. (b) A multivalent receptor 

targeted conjugate containing galactosamine (light blue) to promote liver targeting. (c) Polymer combination therapy 

containing the aromatase inhibitor amino gluthethimide (red) and doxorubicin (blue)
64

.  
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2.3 Polymeric Protein Drugs as Anticancer Delivery Systems 

 

Biotechnology revolution has provided a growing number of peptide, protein, and antibody 

based medications. Studies in the 1970s anticipated the possible conjugation of polyethylene 

glycol to proteins. This method is now well recognized and is called PEGylation and is designed 

to enhance protein solubility and stability, as well as to decrease protein immunogenecity. 

Furthermore, by avoiding renal clearance of small proteins and receptor mediated protein uptake 

by cells of the reticulum endothelial system, PEGylation can be used to prolong plasma half life. 

Lower doses of the medication are of good benefit to the patient motivating conformity. 

Polyethylene glycol (PEG) is a very important polymer for conjugation. Polyethylene glycol has 

been in the pharmaceutical industry since it is a versatile compound, with high water solubility, 

giving hydrodynamic radius that is five to ten times greater than that of a globular protein of 

equivalent molecular weight. As an example of the efficiency of the PEGylation method a 

medication called ADAGENR was obtained from this method and ADAGENR was the first 

PEGylated protein to enter the market, in 1990 (Figure 2.5). 

 

 

Figure 2.5 Adagen.65 



www.manaraa.com

16 

 ADAGENR is used to treat severe combined immunogenicity syndrome, as a substitute to bone 

marrow transplantation and enzyme substitute by gene therapy. The introduction of ADAGENR 

was a cornerstone for a great number of PEGylated protein and peptide pharmaceuticals have 

continued the search for more polymeric drugs. A polymeric drug synthesized by the PEGylation 

method called PEG-L-asparaginase known in the market as ONCASPARR is used for treatment 

of acute lymphoblastic leukemia (Figure 2.6). 

 

Figure 2.6 Oncaspar.68       

Compared to other enzyme based medications PEG-L-asparaginase has the advantage of 

decreased hypersensitivity, a longer plasma half life and slower total clearance. Therefore PEG-

L-asparaginase can be given every two weeks, instead of the two to three times per week 

required by most enzyme based medications. Moreover PEGylation of L-asparaginase has 

showed the decrease of hypersensitivity reactions and the polymer conjugated drugs can be used 

to treat patients that are hypersensitive to the based enzyme medications.  

Another PEGylated medication made of methinyl human granulocyte colony stimulating factor 

(G-CSF) was formulated to prevent severe cancer chemotherapy induced neutropaenia which is 

the low level of white blood cells. This medication is known in the market as NEULASTAR, and 

has the benefit of less repeated administration, being given by a single subcutaneous injection on 
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day 2 of each chemotherapy cycle (Figure 2.7). The regular G-CSF medication without the 

PEGylation must be given daily for two weeks to have the same effect as the PEGylated.
66, 67

 

 

Figure 2.7 Neulasta68 

 

2.4 Polymer DNA Complexes as Anticancer Delivery Systems 

 

Lipoplexes are composed of nucleic acids and cationic lipids. Polyplexes are composed of 

cationic polymers and nucleic acid. These complexes are designed to be immunologically inert, 

and safer than viral vectors.
69

 However lipoplexes and polyplexes have some disadvantages they 

lack specificity, low biodegradability, stability, and cell toxicity. Studies are focusing in the 

improvement of these non-viral gene delivery systems.
70

 Gene therapy studies are important in 

the treatment of genetic and acquired diseases. Cationic lipids and cationic polymers which are 

expected to have an important role in gene therapy are highly under research (Figures 2.8 and 

2.9).
71,72
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Figure 2.8 Lipoplex mediated transfection and endocytosis. Cationic lipids forming micellar structures called 

liposomes are complexed with DNA to create lipoplexes. The structures fuse with the cell membrane, at least 

sometimes after interactions with surface proteoglycans. The complexes are internalized by endocytosis, resulting in 

the formation of a double layer inverted micellar vesicle. During the maturation of the endosome into a lysosome, 

the endosomal wall might rupture, releasing the contained DNA into the cytoplasm and potentially towards the 

nucleus. DNA imported into the nucleus might result in gene expression. Alternatively, DNA might be degraded 
within the lysosome.73 
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Figure 2.9 Polyplex formation. Polyplexes are formed by electrostatic interactions between polycations and DNA. 

(a) When aqueous solutions of a polycation and DNA are mixed, polyplexes form spontaneously. The interaction is 
entropically driven. For gene delivery, an excess of polycation is typically used, which generates particles with a 

positive surface charge. Each particle consists of several plasmid DNA molecules and hundreds of polymer chains 

and is 100–200 nm in diameter. (b) Transmission electron micrograph of polyplexes comprising plasmid DNA and a 

polycation, in this case cyclodextrin modified, branched polyethylenimine (PEI) 165. Scale bar = 200 nm.74 
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2.5 Dendrimers as Anticancer Delivery Systems 

 

Dendrimers (Scheme 3) are macromolecules that can be used as delivery systems, they have 

attractive properties in biomedical applications such as increasing bioavailability, cellular uptake, 

improvement of biodistribution, reduction of the systemic toxicity, clearance, and degradation 

rate.
75

 

 

Scheme 1. Divergent procedures for macromolecular construction of dendrimers.76 

The anticancer properties of cisplatin are limited because of its low water solubility, low 

lipophilicity and drug resistance. Dendrimers have been used to encapsulate cisplatin, which 
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giving complexes with higher accumulation in solid tumors, slower release, and lower toxicity 

than cisplatin by itself.
77

 Most of the dendrimer studies have been performed on modified 

polyamidoamine (PAMAM) dendrimer because PAMAM compounds are commercially 

available, possess a wide number of peripheral groups, and group functionality
78

 (Figure 2.10). 

 

Figure 2.10 Hydroxyl terminated PAMAM dendrimers and their ester terminated precursors.79 

2.6 Polymeric Micelles as Anticancer Delivery Systems 

Polymeric micelles (Figure 2.11) are nanoscopic core shell structures made of amphiphilic 

copolymers, which give a cotrolled and selective way to deliver encapsulated anticancer drugs. 
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Polymeric micelles consisting of amphiphilic copolymers with hydrophilic and hydrophobic 

blocks for solubilization of insoluble drugs have been researched intensively as an example the 

preparation and physical characterization of multifunctional micelles for lung cancer, imaging 

therapy, biocirculation. 

 

 

Figure 2.11 Diagram of a micelle. A sphere with hydrophilic heads (gray) at the surface, and hydrophobic tails 

(black) sequestered inside.80 

 

 

Polymeric drugs are intended to decrease drug degradation and loss as well as to prevent side 

effects and to increase bioavailability.
81

 The framework of polymeric micelles consists of an 

inner core surrounded by an outer shell of hydrophilic polymers. The inner core serves as a 

container of hydrophobic drugs and these types of delivery systems have shown longer retention 

time in the bloodstream and effective tumor accumulation after their admistration.
82

 In our 

research we focused on the design and synthesis of amphiphilic molecules having a lipid 

hydrophobic chain containing ester functional groups and a hydrophilic head which has a 

platinum coordinated bond with aromatic N-containing heterocyclic compounds such as 

bipyridine and biquinoline to form cisplatin analogues. Amphiphilic cisplatin analogues emulsify 
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to make micelles that project the Pt-Cl groups on the surface of the micelle. These platinum 

micelles may be used as alkylating-like agents, intercalating agents and as drug delivery systems 

that encapsulate anticancer drugs. The intracellular activation of esterases in cancerous cells will 

cleave the ester group found in the lipid chain of the micelles. The micelles of platinum 

biquinoline and platinum bipyridine will disassemble by the action of the esterases on the ester 

releasing the anticancer drugs, the Pt-Cl part of the molecule will bind to the DNA and the 

heterocyclic rings of the molecule will intercalate in the DNA disrupting the DNA structure 

leading to cell death. 

Chapter 3: Objetives in the Synthesis of the Therapeutic Cisplatin Analogues. 

 

Chemotherapy is the most important medical method for the treatment of most cancers. Some of 

the most used chemotherapeutic drugs are used for destroying or controlling cancerous cells, but 

also chemotherapeutic drugs tend to be toxic to healthy cells. In our laboratory we synthesized 

platinum micelles which are amphiphilic molecules that have a hydrophilic polar head and a 

hydrophobic tail, which self-assemble by forming platinum micelles. These platinum micelles 

compounds may have applications on cancers of the brain, breast, lung, testicular, ovarian, 

cervical and bladder which require hydrophobic molecules to permeate the surrounding tissue of 

such organs.  

Chapter 4: Synthesis and Self-Assembly of Platinum Bipyridine Complex 

4.1 Materials 
 

The materials for the sections 4.1 and 5.1 were the same in both sections. Triethylene Glycol was 

purchased from TCI Tokio Kasei. The 2,2’-bipyridine-5,5’-dicarboxylic acid and 2,2’-

biquinoline-4,4’-dicarboxylic acid, decanoyl chloride and benzonitrile were purchased from 

Sigma Aldrich. The thionyl chloride was purchased from Alfa Aesar. The potassium 
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chloroplatinite crystal was purchased from Johnson Matthey Co. The solvents used were 

obtained from Sigma Adrich. 

4.2 Instrumental Methods 

 

The instrumental methods for the sections 4.2 and 5.2 were the same for both sections. NMR 

spectra was recorded on a JOEL 600 MHz spectrometer at room temperature, the solvent used 

was chloroform-d. Mass Spectrometry data was obtained from JOEL USA AccuTOF
TM  

DART 

at 200 
o
C and 1500 volts. Flourescence microscopy was obtained from a Nikon AZ100 with 

confocal C1 at a magnification 5X objective, 8X zoom and 0.6 dimagnifier and a Carl Zeiss 

axioskop microscope at 20X objective. The hydrodynamic diameter of the micelles was 

determined by dynamic light scattering using PDDLS/CoolBatch 90T and PD2000DLS
Plus 

Dynamic Light Scattering (Precision Detectors). Infrared spectroscopy information was obtained 

from an IR Bruker Tensor 27. The TEM images were obtained from a Carl Zeiss EM-10 

instrument. 

4.3 Analysis Data  

4.3.1. 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl-decanoate Analysis Data. 
 

1
H NMR (600 MHz, CDCl3) : δ 4.05, 3.88, 3.50, 3.49, 3.37, 1.98, 1.2952, 1.2837, 0.99.

  

 

13
C  NMR (150 MHz, CDCl3): δ 172.7204, 71.4193, 70.72, 70.39, 68.74, 63.05, 61.42, 33.63,  

 

31.73, 29.33, 29.21, 22.47, 13.78. Appendix Section 
1
H NMR and 

13
C NMR spectrums (Figure  

 

A.1 and A.2 respectively). 

4.3.2. Bis(13-oxo-3,6,9,12-tetraoxadocosyl)2,2’-bipyridine-5,5’-dicarboxylate Analysis Data. 
 
1
H NMR (600 MHz, CDCl3): 9.1789, 8.4838, 8.4700, 4.44, 4.1331, 3.8846, 3.6086, 3.5524,  

 

2.2228, 1.4979, 1.1532, 0.7696. 
13

C NMR (150 MHz, CDCl3): 174.0704, 165.0988, 158.1571,  

 

150.3250, 137.9065, 126.3210, 122.0315, 70.4014, 70.2608, 69.0161, 64.1712, 63.2999,  
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34.1447, 31.8085, 30.2478, 29.3765, 29.2137, 24.8476, 22.6072, 14.2292. Appendix Section   

 
1
H NMR and 

13
C NMR spectrums (Figure A.3 and A.4 respectively). 

4.3.3. Cis(benzonitrile)dichloropatinum(II) Analysis Data. 

 
1
H NMR (600 MHz, CDCl3): δ 7.7980, 7.7852, 7.4199. 

13
C NMR (150 MHz, CDCl3)  δ 

135.2926, 133.8564, 133.5979, 116.8707, 109.5460. Appendix Section 
1
H NMR and 

13
C NMR 

spectrums (Figure A.5 and A.6 respectively). 

4.3.4. Platinum Bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2, 2’-bipyridine-5,5’-dicarboxylate 

Analysis Data. 

 
1
H NMR (600 MHz, CDCl3): δ 10.2543, 9.4939, 8.8422, 4.5728, 4.1938, 3.8857, 3.6051, 3.4723,  

 

3.2993, 2.3385, 1.5586, 1.2391, 0.8474. 
13

C NMR (150 MHz, CDCl3): δ 173.8885, 165.1371,  

 

159.6888, 138.2416, 127.5562, 121.1698, 72.1, 70.8, 70.5, 66.8043, 65.5027, 64.9659, 34.00,  

 

31.0042, 30.9659, 29.7404, 22.70, 15.26. Appendix Section 
1
HNMR and 

13
CNMR spectrums  

 

(Figure A.7 and A.8 respectively). 

 

4.4 Chemical Synthesis 

 

4.4.1 Synthesis of 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl-decanoate. 
 

The 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl-decanoate was prepared by adding 2 

equivalents of tetraethylene glycol 10g (51.5 mmol) in anhydrous chloroform and 1 equivalent of 

decanoyl chloride 4.90g (25.7 mmol) in chloroform mixed in a round flask at room temperature, 

the mixture was left stirring for 2 h. The crude was purified by preparative plate using 9:1 v/v 

chloroform/ methanol. 

1
H NMR (600 MHz, CDCl3):  δ 4.05, 3.88, 3.50, 3.49, 3.37, 1.98, 1.2952, 1.2837, 0.99.

  

 13
C NMR (150 MHz, CDCl3): δ 172.7204, 71.4193, 70.72, 70.39, 68.74, 63.05, 61.42, 33.63, 

31.73, 29.33, 29.21, 22.47, 13.78 (Scheme 4.1). 
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Scheme 4. 1 Synthesis of 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl-decanoate 

 

4.4.2. Synthesis of 2, 2’-biquinoline-4,4’dicarboxylic dichloride 
 

A treatment of 2,2’-bipyridine -5,5’dicarboxylic acid .58g (2.4 mmol) with thionyl chloride 10ml 

was refluxed for 24 h at 50 
o
C to obtain the compound 2, 2’-biquinoline-4,4’dicarboxylic 

dichloride .68g (2.3 mmol). The thionyl chloride excess was removed by vacuum obtaining a 

white powder (Scheme 4.2). 
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Scheme 4. 2 Synthesis 2, 2’-biquinoline-4,4’dicarboxylic dichloride 

 

4.4.3. Bis(13-oxo-3,6,9,12-tetraoxadocosyl)2,2’-bipyridine-5,5’-dicarboxylate 
 

The (2,2’-biquinoline-4,4’dicarboxylic dichloride .68g (2.3 mmol) was dissolved in chloroform 

and two equivalents of 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl-decanoate 1.6g (4.6 

mmol) compound were added as well as 2 equivalents of triethylamine 0.47g (4.67 mmol). The 

mixture was left refluxing for 24 h at 50 
o
C to obtain 1.80g (1.5mmol) of bis(13-oxo-3,6,9,12-

tetraoxadocosyl)2,2’-bipyridine-5,5’-dicarboxylate. 
1
H NMR(500 MHz, CDCl3): δ 9.1789, 

8.4838, 8.4700, 4.44, 4.1331, 3.8846, 3.6086, 3.5524, 2.2228, 1.4979, 1.1532, 0.7696. 
13

C NMR 

(150 MHz, CDCl3): δ 174.0704, 165.0988, 158.1571, 150.3250, 137.9065, 126.3210, 122.0315, 

70.4014, 70.2608, 69.0161, 64.1712, 63.2999, 34.1447, 31.8085, 30.2478, 29.3765, 29.2137, 

24.8476, 22.6072, 14.2292 (Scheme 4.3). 
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Scheme 4.3 Synthesis of bis(13-oxo-3,6,9,12-tetraoxadocosyl)2,2’-bipyridine-5,5’-dicarboxylate 

4.4.4. Synthesis of Cis(benzonitrile)dichloropatinum(II) 

 

The synthesis of the cis(benzonitrile)dichloropatinum(II) was carried out by adding 1 equivalent  

 

of potassium tetrachloroplatinate(II) 3.35g (8 mmol) and 1 equivalent of benzonitrile 1.66g (16.1  

 

mmol) in 50 ml of water mixed in a round flask at 60 
o
C for 6 h. Cis(benzonitrile)dichloroplati- 

 

num(II) green compound 1.9 g (3.8 mmol) was obtained then filtered and dried at vacuum for 3  

 

h. The dried compound was washed 3 times with diethyl ether and 1.9g (3.8 mmol) were  

 

obtained (scheme 4.4).  
 

1
H NMR (600 MHz, CDCl3): δ 7.7980, 7.7852, 7.4199. 

13
C NMR (150 MHz, CDCl3) δ  

 

135.2926, 133.8564, 133.5979, 116.8707, 109.5460. Mass spectrum cis(benzonitrile)dichlopla- 

 

tinum(II) (M.W= 472.2326) (Figure 4.1). 
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Scheme 4.4 Synthesis of cis(benzonitrile)dichloroplatinum(II) 

 

 
 

Figure 4.1 Mass Spectrum of cis(benzonitrile)dichloroplatinum(II) (M.W= 472.2326) 

4.4.5. Platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-bipyridine-5,5’-dicarboxylate. 

 

An equivalent of bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-bipyridine-5,5’-dicarboxylate 1.80g 

(1.53 mmol) was added to an equivalent of cis(benzonitrile)dichloropatinum(II) 0.76g (1.53 

mmol) in 30 ml of toluene and refluxed at 40 
o
C for 24 h. The solvent was removed at vacuum 

and the solid obtained was dissolved in chloroform and removed with the rotovap then the solid 

was washed with diethyl ether and centrifuged to obtain a platinum bis(13-oxo-3,6,9,12-

tetraoxadocosyl) 2,2’-bipyridine-5,5’-dicarboxylate compound 2.2 g (1.86 mmol) (scheme 4.5).  
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Scheme 4.5 Platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-bipyridine-5,5’-dicarboxylate 

 
1
H NMR (600 MHz, CDCl3): δ 10.2543, 9.4939, 8.8422, 4.5728, 4.1938, 3.8857, 3.6051, 3.4723, 

3.2993, 2.3385, 1.5586, 1.2391, 0.8474. 
13

CNMR (150 MHz, CDCl3): δ 173.8885, 165.1371, 

159.6888, 138.2416, 127.5562, 121.1698, 72.1, 70.8, 70.5, 66.8043, 65.5027, 64.9659, 34.00, 

31.0042, 30.9659, 29.7404, 22.70, 15.26. The IR spectrum of the platinum bis(13-oxo-3,6,9,12-

tetraoxadocosyl) 2,2’-bipyridine-5,5’-dicarboxylate showed vibrational absorption frequencies at 

the 520 cm
-1

, 344 cm
-1

 which were assigned to the ν(Pt-N) and ν(Pt-Cl) respectively. These 

assignments are consistent with the literature frequency values according to the literature.
83,84,85
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Fluorescence microscope image, light scattering hydrodynamic diameter, HeLa cells percent 

availability, IR irrational frequencies, Mass Spectrum, and TEM image for pt-bipyridine 

complex are shown on figures 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7 respectively. 

Fluorescence microscope image (Figure 4.2) indicates the formation of micelles structures of  

platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-bipyridine-5,5’-dicarboxylate using 1:1 v/v  

chloroform/methanol with Nile red (7-diethylamino-3,4-benzophenoxazine-2-one) as  

fluorescence indicator.  

 

 
 

Figure 4.2 Fluorescence Microscope Image of platinum bis (13-oxo-3, 6, 9, 12-tetraoxadocosyl) 2,2’-bipyridine-

5,5’-dicarboxylate. 
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The light scattering hydrodynamic displays diameter of platinum bis(13-oxo-3,6,9,12- 

 

tetraoxadocosyl)  2, 2’-bipyridine-5,5’-dicarboxylate (Figure 4.3) diameter population ranges 

from 40nm, 200-400nm and from 1100-1300 nm. 

 
 

 
 

Figure 4.3 DLS of Platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-bipyridine-5,5’-dicarboxylate 
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The percent availability of HeLa cancer cells (Figure 4.4) indicates low toxicity of platinum 

bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-bipyridine-5,5’-dicarboxylate complex for the HeLa 

cancer cells. Each triplicate at different concentrations is shown and compared with their 

respective percentage difference and bar errors. 

 
 

Figure 4.4 Percent availability for HeLa cells treated with platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-
bipyridine-5,5’-dicarboxylate Complex 
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The infrared spectrum Figure (4.5) displays selected vibrational frequencies at the 550 cm
-1

, 355  

 

cm
-1

 which were assigned to the ν(Pt-Cl) and ν(Pt-N) respectively. 

 

 
 
Figure 4. 5 Infrared vibrational frequencies for platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-bipyridine-5,5’-

dicarboxylate. 

The mass spectrum (Figure 4.6) for platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’- 

bipyridine-5,5’-dicarboxylate (M.W = 1171.11) indicates the signals of platinum isotopes  

where the presence of the platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’- 

bipyridine-5,5’-dicarboxylate can be observed and determined. 
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Figure 4.6 Mass Spectrum for platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-bipyridine-5,5’-dicarboxylate 

(M.W.= 1171.11). 

The TEM picture (Figure 4.7) displays a spherical structure which has the form of a micelle  

 

with an empty core surrounded by amphiphilic molecules of platinum bis(13-oxo-3,6,9,12- 

 

tetraoxadocosyl) 2,2’-bipyridine-5,5’-dicarboxylate. 
 

. 

Figure 4.7 TEM for platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-bipyridine-5,5’-dicarboxylate. 
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Chapter 5: Synthesis and Self-Assembly of Platinum Biquinoline Complex 

5.1 Materials 
 

The material for this section were the same as on section 4.1 

5.2 Instrumental Methods 

 

The instrumental method for this section were the same as on section 5.1 

5.3 Analysis Data 

5.3.1. 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl-decanoate Analysis Data 
 

1
H NMR (600 MHz, CDCl3): δ 4.05, 3.88, 3.50, 3.49, 3.37, 1.98, 1.2952, 1.2837, 0.99.

  13
C NMR  

 

(150 MHz, CDCl3):172.7204, 71.4193, 70.72, 70.39, 68.74, 63.05, 61.42, 33.63, 31.73, 29.33,  

 

29.21, 22.47, 13.78. Appendix Section 
1
H NMR and 

13
C NMR spectrums (Figure A.9 and A.10  

 

respectively). 

 

5.3.2. Bis(13-oxo-3,6,9,12-tetraoxadocosyl)2,2’-biquinoline-4,4’-dicarboxylate Analysis 

Data. 

  
1
H NMR (600 MHz, CDCl3): δ 8.9281, 8.4219, 8.2364, 7.9123, 4.3601, 4.2722, 3.89, 3.64, 3.50,  

 

2.0064, 1.8312, 1.28, 0.9631. 
13

C NMR (150 MHz, CDCl3): δ 173.7161, 166.3531, 155.5720,  

 

148.5728, 136.0203, 130.5052, 130.1509, 129.3754, 128.4275, 127.9009, 127.5466, 126.8285,  

 

120.2698, 70.3948, 70.2703, 70.2225, 68.0394, 64.2287, 63.2042, 32.0479, 31.7032, 29.5393,  

 

29.2616, 22.5114, 14.0760. Appendix Section 
1
H NMR and 

13
C NMR spectrums (Figure A.11  

 

and A.12 respectively). 

5.3.3. Cis(benzonitrile)dichloropatinum(II) Analysis Data.  

 
1
H NMR (600 MHz, CDCl3): δ 7.7980, 7.7852, 7.4199. 

13
C NMR (150 MHz, CDCl3): δ  

 

135.2926, 133.8564, 133.5979, 116.8707, 109.5460. Appendix Section 
1
H NMR and 

13
C NMR  

 

spectrums (Figure A.13 and A.14 respectively). 



www.manaraa.com

37 

5.3.4. Platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl)2,2’-biquinoline-4,4’-dicarboxylate 

Analysis Data.  

 

 
1
H NMR (600 MHz, CDCl3):  δ 8.8273, 8.7644, 8.4906, 8.2731, 4.2121, 4.1067, 3.6429, 3.5856,  

 

2.3293, 2.3179, 2.3053, 1.5815, 1.2654, 0.8531. 
13

C NMR (150 MHz, CDCl3) δ 173.9747,  

 

166.6021, 148.7643, 148.7387, 136.3458, 132.2383, 130.4956, 120.5953, 70.4140, 70.0597,  

 

68.8150, 64.1042, 63.3957, 34.2884, 31.9330, 29.3382, 29.2042, 22.7316, 14.2580. Appendix  

 

section 
1
H NMR and 

13
C NMR spectrums (Figure A.15 and A.16 respectively). 

5.4. Chemical Synthesis 

5.4.1. Synthesis of 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl decanoate analysis. 

 

The 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl-decanoate was prepared by adding 2 

equivalents of tetraehylene glycol 10g (51.5 mmol) in anhydrous chloroform and 1 equivalent of 

decanoyl chloride 4.90g (25.7 mmol) in chloroform mixed in a round flask at room temperature, 

the mixture was left stirring for 2 h. The crude was purified by preparative plate using 9:1 v/v 

chloroform/ methanol. 

1
H NMR (600 MHz, CDCl3): δ 4.05, 3.88, 3.50, 3.49, 3.37, 1.98, 1.2952, 1.2837, 0.99.

  13
C NMR 

(150 MHz, CDCl3): δ 172.7204, 71.4193, 70.72, 70.39, 68.74, 63.05, 61.42, 33.63, 31.73, 29.33, 

29.21, 22.47, 13.78 (Scheme 5.1). 
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Scheme 5.1 Synthesis of 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl decanoate. 

 

5.4.2. Synthesis of 2, 2’-biquinoline-4,4’dicarboxylic dichloride 

 

A treatment of 2, 2’-biquinoline-4,4’dicarboxylic 1g (2.9 mmol) acid in 15 ml of thionyl chloride 

was refluxed for 24 h at 50 
o
C obtaining the compound 2, 2’-biquinoline-4,4’dicarboxylic 

dichloride 1.2g (3.15 mmol).
86

 The thionyl chloride excess was removed by vacuum 

(scheme5.2). 

 

 

Scheme 5.2 Synthesis of 2,2’-biquinoline-4,4’dicarboxylic dichloride 

5.4.3. Synthesis of bis(13-oxo-3,6,9,12-tetraoxadocosyl)2,2’-biquinoline-4,4’-dicarboxylate. 

 

The 2,2’-biquinoline-4,4’dicarboxylic-dichlorid 0.45g (1.2 mmol) was dissolved in chloroform 

and 2 equivalents of 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl decanoate 0.82 (2.4 mmol) 

was added as well as 2 equivalents of triethylamine 0.24g (2.4 mmol). The mixture was left 

refluxing for 24 h at 50 
o
C temperature to obtain bis(13-oxo-3,6,9,12-tetraoxadocosyl)2,2’-

biquinoline-4,4’-dicarboxylate 1.2 g (0.78 mole).
 1

H NMR (600 MHz, CDCl3): δ 8.9281, 8.4219, 

8.2364, 7.9123, 4.3601, 4.2722, 3.89, 3.64, 3.50, 2.0064, 1.8312, 1.28, 0.9631. 
13

C NMR( 150 
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MHz, CDCl3) : δ 173.7161, 166.3531, 155.5720, 148.5728, 136.0203, 130.5052, 130.1509, 

129.3754, 128.4275, 127.9009, 127.5466, 126.8285, 120.2698, 70.3948, 70.2703, 70.2225, 

68.0394, 64.2287, 63.2042, 32.0479, 31.7032, 29.5393, 29.2616, 22.5114, 14.0760 (Scheme 

5.3). 

 

 

 

 
Scheme 5.3 Synthesis of bis(13-oxo-3,6,9,12-tetraoxadocosyl)2,2’-biquinoline-4,4’-dicarboxylate 

5.4.4. Synthesis of Cis(benzonitrile)dichloropatinum(II). 

 

The synthesis of the cis(benzonitrile)dichloropatinum(II) was carried out by adding 1 equivalent  

 

of potassium tetrachloroplatinate(II) 3.35g (8 mmol) and 1 equivalent of benzonitrile 1.66g (16.1  

 

mmol) in 50 ml of water mixed in a round flask at 60 
o
C for 6 h. Cis(benzonitrile)dichloroplati- 

 

num(II) green compound was obtained then filtered and dried at vacuum for 3 h. The dried  

 

compound was washed 3 times with diethyl ether and 1.9g (3.8 mmol) were obtained 
1
HNMR  

 



www.manaraa.com

40 

(600 MHz, CDCl3): δ 7.7980, 7.7852, 7.4199. 
13

CNMR (150 MHz, CDCl3) δ 135.2926,  

 

133.8564, 133.5979, 116.8707, 109.5460 (scheme 5.4). Mass spectrum of cis(benzonitrile)di- 

 

chloroplatinum (II) (Figure 5.1). 

 

 

 

 

 

Scheme 5.4 Synthesis of cis(benzonitrile)dichloroplatinum(II) 

 

 

Figure 5.1 Mass Spectrum of cis(benzonitrile)dichloroplatinum(II) (M.W= 472.2326) 
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5.4.5. Synthesis of Platinum Bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-biquinoline-4,4’-

dicarboxylate. 

 

One equivalent of bis(13-oxo-3,6,9,12-tetraoxadocosy) 2,2’-biquinoline-4,4’dicarboxylate ( 

Ligand 2 ) was added to one equivalent of cis(benzonitrile)dichloropatinum(II) compound in 

toluene and refluxed for 24 hours the solvent was removed at vacuum and solid obtained was 

dissolved in chloroform and removed with the rotovap the solid was washed with diethyl ether  

and centrifuged to obtain a platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-biquinoline-4,4’ 

dicarboxylate (Scheme 5.5) 

 

Scheme 5.5 Synthesis of platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-biquinoline-4,4’ dicarboxylate 
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1
H NMR (600 MHz, CDCl3): δ 8.8273, 8.7644, 8.4906, 8.2731, 4.2121, 4.1067, 3.6429, 3.5856, 

2.3293, 2.3179, 2.3053, 1.5815, 1.2654, 0.8531. 
13

C NMR (150 MHz, CDCl3) δ 173.9747, 

166.6021, 148.7643, 148.7387, 136.3458, 132.2383, 130.4956, 120.5953, 70.4140, 70.0597, 

68.8150, 64.1042, 63.3957, 34.2884, 31.9330, 29.3382, 29.2042, 22.7316, 14.2580 (scheme 4). 

The IR spectrum of the platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-biquinoline-

4,4’dicarboxylate complex showed vibrational absorption frequencies at the 550 cm
-1

, 355 cm-1 

which were assigned to the ν(Pt-Cl) and ν(Pt-N) respectively. These values are consistent 

according to the literature
87,88

. Fluorescence microscope image, light scattering hydrodynamic 

diameter, HeLa cells percent availability, IR vibrational frequencies, and mass spectrum for the 

platinum platininum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-biquinoline-4,4’dicarboxylate 

complex are shown on figures 5.2, 5.3, 5.4, 5.5, and 5.6 respectively. 

The flourescence microscope image (Figure 5.2) indicates the formation of micelle structures of 

platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-biquinoline-4,4’dicarboxylate using 1:1 v/v 

chloroform/methanol with Nile red (7-diethylamino-3,4-benzophenoxazine-2-one) as 

fluorescence indicator.  
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Figure 5.2 Fluorescence microscope Image of platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-biquinoline-

4,4’dicarboxylate. 

 
The direct light scattering image of platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’- 

 

biquinoline-4,4’dicarboxylate (Figure 5.3) displays the diameter sizes of the micelle structures  

 

ranging from 10
1 
to 10

3
 nm. 
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Figure 5.3 DLS of platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-biquinoline-4,4’ dicarboxylate 

 

The percent availability of HeLa cancer cells (Figure 5.4) indicates that at 24 uM the LD50 of  

platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2, 2’-biquinoline-4,4’ dicarboxilate kills about 

50% of the HeLa cancer cells. Each triplicate at different concentrations is shown and compared 

with their respective percentage difference and bar errors. 

 

 
Figure 5.4 Percent availability for HeLa cells treated with platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-

biquinoline-4,4’ dicarboxylate. 
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The infrared spectrum (Figure 5.5) displays selected vibrational frequencies at the 550 cm
-1

, 355  

 

cm
-1

 which were assigned to the ν(Pt-Cl) and ν(Pt-N) respectively of platinum bis(13-oxo- 

 

3,6,9,12-tetraoxadocosyl) 2,2’-biquinoline-4,4’ dicarboxylate. These values are consistent 

according to the literature. 

 

 

 

 
 

Figure 5.5 Infrared irrational frequencies for  platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-biquinoline-
4,4’dicarboxylate. 
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The mass spectrum (Figure 5.6) of platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’- 

 

biquinoline-4,4’dicarboxylate (M.W=1171.11) indicates the signals of platinum isotopes where 

the presence of the platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-biquinoline-

4,4’dicarboxylate can be observed and determined. 

 

 

 
Figure 5.6 Mass Spectrum for bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-biquinoline-4,4’ dicarboxylate  (M.W.= 

1171.11) 
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Conclusion 

In our research we focused on the design and synthesis of amphiphilic molecules having a lipid 

hydrophobic chain containing ester functional groups and a hydrophilic head which has a 

platinum coordinated bond with aromatic N-containing heterocyclic compounds such as 

bipyridine and biquinoline to form cisplatin analogues. Amphiphilic cisplatin analogues emulsify 

to make micelles that project the Pt-Cl groups on the surface of the micelle. These platinum 

micelles may be used as alkylating-like agents, intercalating agents and as drug delivery systems 

that encapsulate anticancer drugs. The intracellular activation of esterases in cancerous cells will 

cleave the ester group found in the lipid chain of the micelles. The micelles of platinum 

biquinoline and platinum bipyridine will disassemble by the action of the esterases on the ester 

functional group releasing the anticancer drugs, the Pt-Cl part of the molecule will bind to the 

DNA bases forming DNA adducts and the heterocyclic rings of the molecule will intercalate in 

the DNA disrupting the DNA structure. The Pt-micelles may have applications on cancers of the 

brain, breast, lung, testicular, ovarian, cervical, colon and bladder which requires hydrophobic 

molecules to permeate the surrounding tissue of such organs. 

 

 

 

.  
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Appendix 

 

HNMR and CNMR Spectra supporting data for Chapter 4. 

 

2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl-decanoate. 
1
HNMR: 4.05, 3.88, 3.50, 3.49, 

3.37, 1.98, 1.2952, 1.2837, 0.99.
 13

CNMR:172.7204, 71.4193, 70.72, 70.39, 68.74, 63.05, 61.42, 

33.63, 31.73, 29.33, 29.21, 22.47, 13.78 (Figure A.1 and A.2). 
 

 
 

Figure A.1. 
1
HNMR of 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl-decanoate. 
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Figure A.2. 
13

CNMR of 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl-decanoate. 

Bis(13-oxo-3,6,9,12-tetraoxadocosyl)2,2’-bipyridine-5,5’-dicarboxylate.
1
HNMR: 9.1789, 

8.4838, 8.4700, 4.44, 4.1331, 3.8846, 3.6086, 3.5524, 2.2228, 1.4979, 1.1532, 0.7696. 
13

CNMR: 

174.0704, 165.0988, 158.1571, 150.3250, 137.9065, 126.3210, 122.0315,70.4014, 70.2608, 

69.0161, 64.1712, 63.2999, 34.1447, 31.8085, 30.2478, 29.3765, 29.2137, 24.8476, 22.6072, 

14.2292 (Figures A3 and A4). 

 

 

Figure A.3. 
1
HNMR of Bis(13-oxo-3,6,9,12-tetraoxadocosyl)2,2’-bipyridine-5,5’ dicarboxylate. 



www.manaraa.com

50 

 

Figure A.4. 
1
CNMR of Bis(13-oxo-3,6,9,12-tetraoxadocosyl)2,2’-bipyridine-5,5’ dicarboxylate. 

 

Cis(benzonitrile)dichloropatinum(II). 
1
HNMR (600 MHz, CHCl3): δ 7.7980, 7.7852, 7.4199. 

13
CNMR (600 MHz, CHCl3) δ 135.2926, 133.8564, 133.5979, 116.8707, 109.5460 (Figures A.5 

and A.6). 

 

 

 
 

Figure A.5.  
1
HNMR cis(benzonitrile)dichloropatinum(II). 
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Figure A.6.  
1
CNMR cis(benzonitrile)dichloropatinum(II). 

 

 

 

Platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-bipyridine-5,5’-dicarboxylate.
1
HNMR 

(600 MHz, CHCl3): δ 10.2543, 9.4939, 8.8422, 4.5728, 4.1938, 3.8857, 3.6051, 3.4723, 3.2993, 

2.3385, 1.5586, 1.2391, 0.8474. 
13

CNMR (600 MHz, CHCl3): δ 173.8885, 165.1371, 159.6888, 

138.2416, 127.5562, 121.1698, 72.1, 70.8, 70.5, 66.8043, 65.5027, 64.9659, 34.00, 31.0042, 

30.9659, 29.7404, 22.70, 15.26 (Figures A.7 and A.8). 

 

 
 

Figure A.7. 
1
HNMR of Platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-bipyridine-5,5’-

dicarboxylate. 
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Figure A.8. 
1
CNMR of Platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-bipyridine-5,5’-

dicarboxylate. 

 

 

HNMR and CNMR Spectra supporting data for Chapter 5. 

 

2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl-decanoate. 
1
HNMR: 4.05, 3.88, 3.50, 3.49, 

3.37, 1.98, 1.2952, 1.2837, 0.99.
 13

CNMR:172.7204, 71.4193, 70.72, 70.39, 68.74, 63.05, 61.42, 

33.63, 31.73, 29.33, 29.21, 22.47, 13.78 (Figure A9 and A10). 
 

 
 

Figure A.9. 
1
HNMR of 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl-decanoate. 
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Figure A.10. 
13

CNMR of 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl-decanoate. 

 

 

 

Bis(13-oxo-3,6,9,12-tetraoxadocosyl)2,2’-biquinoline-4,4’-dicarboxylate.
 1

HNMR (600 MHz, 

CHCl3): δ 8.9281, 8.4219, 8.2364, 7.9123, 4.3601, 4.2722, 3.89, 3.64, 3.50, 2.0064, 1.8312, 1.28, 

0.9631. 
13

CNMR( 600 MHz, CHCl3: δ 173.7161, 166.3531, 155.5720, 148.5728, 136.0203, 

130.5052, 130.1509, 129.3754, 128.4275, 127.9009, 127.5466, 126.8285, 120.2698, 70.3948, 

70.2703, 70.2225, 68.0394, 64.2287, 63.2042, 32.0479, 31.7032, 29.5393, 29.2616, 22.5114, 

14.0760 ( Figure A11 and A12). 

 

 
 

Figure A.11. 
1
HNMR of bis(13-oxo-3,6,9,12-tetraoxadocosyl)2,2’-biquinoline-4,4’-

dicarboxylate. 
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Figure A.12. 
13

CNMR of bis(13-oxo-3,6,9,12-tetraoxadocosyl)2,2’-biquinoline-4,4’-

dicarboxylate. 

Cis(benzonitrile)dichloropatinum(II). 
1
HNMR (600 MHz, CHCl3): δ 7.7980, 7.7852, 7.4199. 

13
CNMR (600 MHz, CHCl3) δ 135.2926, 133.8564, 133.5979, 116.8707, 109.5460 (Figure A.13 

and A.14). 

 

 

 
 

Figure A.13.  
1
HNMR cis(benzonitrile)dichloropatinum(II). 
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Figure A.14.  
1
CNMR cis(benzonitrile)dichloropatinum(II). 

 

 

 

 

Platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-biquinoline-4,4’ dicarboxylate. 
1
HNMR 

(600 MHz, CHCl3): δ 8.8273, 8.7644, 8.4906, 8.2731, 4.2121, 4.1067, 3.6429, 3.5856, 2.3293, 

2.3179, 2.3053, 1.5815, 1.2654, 0.8531. 
13

CNMR (600 MHz, CHCl3) δ 173.9747, 166.6021, 

148.7643, 148.7387, 136.3458, 132.2383, 130.4956, 120.5953, 70.4140, 70.0597, 68.8150, 

64.1042, 63.3957, 34.2884, 31.9330, 29.3382, 29.2042, 22.7316, 14.2580 (Figure A15 and A16). 
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Figure A.15. 
1
HNMR of Platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-biquinoline-4,4’ 

dicarboxylate. 

 

 
 

Figure A.16. 
1
CNMR of Platinum bis(13-oxo-3,6,9,12-tetraoxadocosyl) 2,2’-biquinoline-4,4’ 

dicarboxylate. 
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